

CollabNet Subversion
1.9 for Configuration
Managers
Lab Exercises

4000 Shoreline Court, Suite 400
South San Francisco, California 94080 U.S.A.

888.778.9793 toll free
650.228.2500 voice
650.228.2501 fax
www.collab.net
E-mail info@collab.net

Table of Contents

1. Essential Concepts 3

1.1. Basic repository operations 3
1.2. Restructuring a repository 3
1.3. Mapping svn:external 4

2. Best Practices 5

2.1. Background 5
2.1.1. Your product 5
2.1.2. Your team 5
2.1.3. General lab rules 5

2.2. Scenarios to consider 6
2.2.1. How would you organize your infrastructure to work effectively? 6
2.2.2. What should be? your branching/merging scheme? 6
2.2.3. What if some additional requirements were added? 6
2.2.4. How would you handle recording your promotional process? 6
2.2.5. How would you define roles and permissions? 7

3. Solutions for Lab 1 – Essential Concepts 1 9

3.1. Suggested Solution for Basic Repository Operations 9
3.2. Suggested Solution for Restructuring a Repository 10
3.3. Suggested Solution for Mapping svn:external 12

4. Solutions for Lab 2 – Best Practices 14

4.1. Suggested Solution for Scenarios to Consider 14
4.1.1. How Would You Organize Your Infrastructure to Work Effectively? 14
4.1.2. What Should be Your Branching/Merging Scheme? 14
4.1.3. What if Some Additional Requirements Were Added? 15
4.1.4. How Would You Handle Recording Your Promotional Process? 15
4.1.5. How Would You Define Roles and Permissions? 16

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

2

1. Essential Concepts

1.1. Basic repository operations

Steps Comments

1. Create a new repository named CMlab. Optional (based on your ability to execute this
step)

2. Create branches, tags and trunk
directories in your repository.

Structural change.

3. Import an existing structure into your
trunk.

Structural change.

4. Create a branch from trunk named
release1.

Structural change.

5. Create a tag of trunk’s HEAD and name it
Rel1.0.

Snapshot.

1.2. Restructuring a repository

Steps Comments

1. Create top level directories named
module1, module2 and module3.

Structural change.

2. Create branches, tags and trunk
directories in each of the top level
directories you created in step 1.

Structural change.

3. Create Dev and SCM directories in each
tags directory.

Structural change.

4. Move the appropriate module directory
under the repositories top level trunk
directory to the appropriate module’s
trunk directory (e.g., /trunk/module1 to
/module1/trunk).

Structural change.

5. Move the appropriate module directory
under the release1 branch to the
appropriate module’s branches directory
(e.g., /branches/release1/module1 to
/module1/branches/release1).

Structural change.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

3

6. Move the appropriate module directory
under the Rel1.0 tag to the appropriate
module’s tags directory (e.g.,
/tags/Rel1.0/module1 to
/module1/tags/Rel1.0).

Structural change.

7. Delete the top level branches, tags and
trunk directories.

Structural change.

1.3. Mapping svn:external

Steps Comments

1. If you haven’t created a working copy
previously, then create one checking out
module 1’s trunk.

2. Add the svn:external property to
module1’s trunk directory creating a mod2
directory by mapping in the Rel1.0 tagged
revision of module2.

Property setting.

3. Commit the change.

4. Update your working copy and validate
the external works.

Structural change.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

4

2. Best Practices

2.1. Background

2.1.1. Your product

Your company, Brilliant Ideas Inc., develops a product that consists of:

• 5 standard components that you use as is,

• 2 modified libraries, and

• 4 main components that contains your added value.

(Your development owns the 4 components and maintains patches on 2 libraries.)

Releases happen every 6 months with development overlapping. Bug fixes are delivered as patches. Your
product is sold to external customers and deployed as a BTF (behind-the-firewall) application.

2.1.2. Your team

Your development team is distributed across three global sites:

• Amsterdam, The Netherlands: Team that started the product 8 years ago and “owns” it. Currently 50
software engineers and 10 QA engineers. Focussed on developing 3 components – 2 of which are fairly
mature and stable and 1 is brand new with new features – and integrating and testing the product as a
whole.

• Bangalore, India: Team has been involved for 5 years. Currently 35 developers and 20 QA engineers.
Focussed on integrating and testing the 5 standard components and the 2 libraries as well as the
patches on the modified libraries.

• Sunnyvale, California. Outsource partner, currently 10 developers and 2 QA engineers. Focussed on 1
component that delivers a set of brand new features.

2.1.3. General lab rules

• Team up in groups of four

• There are no right or wrong answers – just different opinions, though best practices might lead you to
particular choices

• One person from each group will present their result from each part of the lab

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

5

2.2. Scenarios to consider

2.2.1. How would you organize your infrastructure to work effectively?

• Infrastructure: how many servers and where and what about business continuity?

• Repository scheme: Single or multiple repositories and what goes in those repositories?

• Responsibilities for the infrastructure assignments (e.g. development, QA, integration/release mgt)?

• Try to finish in 30 minutes!

2.2.2. What should be? your branching/merging scheme?

• Branching scheme?

• Responsibilities for creating and using the branches (e.g. development, QA, integration/release
mgt)?

• Try to finish in 15 minutes!

2.2.3. What if some additional requirements were added?

Your organization changes the product to be a SaaS (Software-as-a-Service offering) and each team needs
to use one of the libraries from logically within multiple components. You also find that you’ve got some
features that take a considerable amount of time to develop and put other work at risk. In addition, your
customers are now requesting customizations for their deployments.

• Infrastructure: any changes?

• Branching scheme: any changes?

• Responsibilities (e.g. development, QA, integration/release mgt): any changes?

• Try to finish in 30 minutes!

2.2.4. How would you handle recording your promotional process?

Individual modules are tested through a release candidate approach much like how Subversion is qualified
as an overall product. The complete product/system goes to QA (Quality Assurance), then to UAT (User
Acceptance Testing), and System Testing before being declared production worthy. Any failure in one stage
causes the process to start again with QA. Developers also have the occasional need to tag revisions.

• Infrastructure: any changes?

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

6

• Promotional process: what tags are applied when?

• Responsibilities (e.g. development, QA, integration/release mgt): any changes?

• Same groups, 20 minutes to execute the exercises

2.2.5. How would you define roles and permissions?

• Fill in the table below outlining what role should have what read and write permissions on
repositories (you may only have one), the trunk branch, specific branches (all the types defined to
this point), specific directories, and tags (there may be multiple types). Keep in mind that every role
may not have unique permissions and it is up to you to define reasons for the permissions you give
or don’t give to a specific role.

Role Description Repositories Trunk Branches Directories Tags

Dutch
Developer

Company developer in
The Netherlands

Indian
Developer

Company developer in
India

U.S.
Developer

Outsource developer in
California

Dutch Team
Lead

Development lead in
The Netherlands

Indian Team
Lead

Development lead in
India

U.S. Team
Lead

Development lead in
California

Dutch QA Quality assurance
engineer in The
Netherlands

Indian QA Quality assurance
engineer in India

U.S. QA Quality assurance
engineer in U.S.

Dutch
Release

Formal build and
process tagging

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

7

Engineer engineer in The
Netherlands

Indian
Release
Engineer

Formal build and
process tagging
engineer in India

Configuration
Manager

Configuration
management team
based in The
Netherlands

Management Any type of
management that might
have an interest in
product development

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

8

3. Solutions for Lab 1 – Essential Concepts 1

3.1. Suggested Solution for Basic Repository Operations

Steps Comments

1. If using command line, ‘svn admin create
/repos/CMlab’.

If using TortoiseSVN, create a directory and then right
click on it selecting ‘TortoiseSVN->Create repository
here’.

Optional (based on your ability to
execute this step)

2. If using command line on server (otherwise change
prefix to either http, https, svn or svn+ssh), ‘svn mkdir
file:///repos/CMlab/branches
file:///repos/CMlab/tags file:///repos/CMlab/trunk ’

If using TortoiseSVN, start the repo browser
(TortoiseSVN->Repo-browser supply the URL for your
repository as done with the command line above), then
right click on the URL and select ‘Create folder’
entering in ‘branches’ and click on OK. Repeat for
tags and trunk.

3. If using command line, ‘svn import –m “Importing data”
/target/dir’

If using TortoiseSVN, then right click on the directory
you wish to import and select ‘TortoiseSVN->Import...”.
Enter your log message and hit OK.

4. If using command line, ‘svn copy
file:///repos/CMlab/trunk
file:///repos/CMlab/branches/release1 -m “Creating
release1 branch’ (use the appropriate URL for your
repository).

If using TortoiseSVN, then use the repo browser and
right click on the trunk selecting “Copy to…”. Enter the
appropriate URL (e.g.,
file:///repos/CMlab/branches/release1), click OK, enter
in your log message and click OK.

5. If using command line, ‘svn copy
file:///repos/CMlab/trunk file:///repos/CMlab/tags/Rel1.0
-m “Creating release1 tag’ (use the appropriate URL
for your repository).

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

9

If using TortoiseSVN, then use the repo browser and
right click on the trunk selecting “Copy to…”. Enter the
appropriate URL (e.g., file:///repos/CMlab/tags/Rel1.0),
click OK, enter in your log message and click OK.

3.2. Suggested Solution for Restructuring a Repository

Steps Comments

1. If using command line on server (otherwise change
prefix to either http, https, svn or svn+ssh), ‘svn mkdir
file:///repos/CMlab/trunk/module1
file:///repos/CMlab/trunk/module2
file:///repos/CMlab/trunk/module3 ’

If using TortoiseSVN, use the repo browser, then right
click on the trunk and select ‘Create folder’ entering in
‘module1‘ and click on OK. Repeat for module2 and
module3.

2. If using command line on server (otherwise change
prefix to either http, https, svn or svn+ssh), ‘svn mkdir
file:///repos/CMlab/module1/branches
file:///repos/CMlab/module1/tags
file:///repos/CMlab/module1/trunk
file:///repos/CMlab/module2/branches
file:///repos/CMlab/module2/tags
file:///repos/CMlab/module2/trunk
file:///repos/CMlab/module3/branches
file:///repos/CMlab/module3/tags
file:///repos/CMlab/module3/trunk ’

If using TortoiseSVN, use the repo browser, then right
click on the URL for module1 and select ‘Create folder’
entering in ‘branches’ and click on OK. Repeat for
tags and trunk. Right click on the URL for module2
and then module3 repeating the process done for
module1.

3. If using command line on server (otherwise change
prefix to either http, https, svn or svn+ssh), ‘svn mkdir
file:///repos/CMlab/module1/tags/Dev
file:///repos/CMlab/module1/tags/SCM
file:///repos/CMlab/module2/tags/Dev
file:///repos/CMlab/module2/tags/SCM

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

10

file:///repos/CMlab/module3/tags/Dev
file:///repos/CMlab/module3/tags/SCM ’

If using TortoiseSVN, use the repo browser, then right
click on the URL for module1/tags and select ‘Create
folder’ entering in ‘Dev’ and click on OK. Repeat for
SCM. Right click on the URL for module2/tags and
then module3/tags repeating the process done for
module1.

4. If using command line, ‘svn move
file:///repos/CMlab/trunk/module1
file:///repos/CMlab/module1/trunk -m “Moving module1
to new structure’ (use the appropriate URL for your
repository). Repeat for module2 and module3.

If using TortoiseSVN, then use the repo browser and
left click (and hold) on trunk/module1 and drag & drop
to module1/trunk. Enter the appropriate log message
and click OK. Repeat for module2 and module3.

5. If using command line, ‘svn move
file:///repos/CMlab/branches/release1/module1
file:///repos/CMlab/module1/branches/release1 -m
“Moving module1 release 1 branch to new structure’
(use the appropriate URL for your repository). Repeat
for module2 and module3.

If using TortoiseSVN, then use the repo browser and
left click (and hold) on branches/release1/module1 and
drag & drop to module1/branches/release1. Enter the
appropriate log message and click OK. Repeat for
module2 and module3.

6. If using command line, ‘svn move
file:///repos/CMlab/tags/Rel1.0/module1
file:///repos/CMlab/module1/tags/Rel1.0 -m “Moving
module1 Rel1.0 tag to new structure’ (use the
appropriate URL for your repository). Repeat for
module2 and module3.

If using TortoiseSVN, then use the repo browser and
left click (and hold) on tags/Rel1.0/module1 and drag &
drop to module1/tags. Enter the appropriate log
message and click OK. Repeat for module2 and
module3.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

11

7. If using command line, ‘svn delete
file:///repos/CMlab/branches file:///repos/CMlab/tags
file:///repos/CMlabs/trunk’.

If using TortoiseSVN, then use the repo browser and
right click on the top level branches and select Delete.
Repeat for /tags and /trunk.

3.3. Suggested Solution for Mapping svn:external

Steps Comments

1. If you haven’t created a working copy previously, then
create one checking out module 1’s trunk. If you are
using command line, then ‘svn checkout
file:///repos/CMlab/module1/trunk .’ Use the
appropriate URL and make sure you’re in an empty
directory where you want the working copy.

If you’re using TortoiseSVN, then right click on the
directory where you want to put the working copy and
select ‘SVN Checkout’. Enter the appropriate URL
(e.g., file:///repos/CMlab/module1/trunk) and confirm
the directory that you want to checkout to, then click on
OK.

2. If you’re using the command line, ‘svn propset
svn:externals file:///repos/CMlab/module2/tags/Rel1.0
mod2 .’ at the top of your working copy (using the
appropriate URL).

If you’re using TortoiseSVN, then right click on the
working copy’s top level directory and select
‘TortoiseSVN->Properties’. Click on New and select
svn:externals from the pull-down list. Enter
file:///repos/CMlab/module2/tags/Rel1.0 as the value
and click on OK. Click on OK again.

3. If you’re using the command line, ‘svn commit –m
“Adding external to module2 Rel1.0 revision”’.

If you’re using TortoiseSVN, then right click on the
working copy’s top level directory and select “SVN
Commit”. Enter an appropriate comment and validate
that just the directory is going to be commited and click
on OK.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

12

4. If you’re using the command line, ‘svn update’.

If you’re using TortoiseSVN, right click on the working
copy’s top level directory and Select “SVN Update”.

In either case, validate that the new directory, mod2,
exists and is populated.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

13

4. Solutions for Lab 2 – Best Practices

4.1. Suggested Solution for Scenarios to Consider

4.1.1. How Would You Organize Your Infrastructure to Work Effectively?

Subversion was designed to work over the WAN so a single repository server would probably be the
preferable approach. Alternatively, there could be a repository for the component developed by the
outsource partner in the U.S. which could be replicated in Amsterdam.

Business continuity is best handled by replicating the server so that there is alternative location where code
can be accessed if the primary server is down for more than a few minutes, but less than what it takes to
bring up a new server. Best practice is just to use this replica in read-only mode while the primary server is
down in this case. The replica might be placed in Bangalore so that if the failure was more than just a server
in Amsterdam, then at least the rest of the team could access the replica.

If one was to look at disaster recovery, then replication is a good approach for that as well with procedures
defined as to how to make a replica the master and how to change the DNS mapping to make the
switchover as painless as possible for users.

There really isn’t enough information to definitively determine whether multiple repositories are best and
ultimately such decisions are not absolute. In general, it is best to start with a single repository if that seems
at all appropriate and then be able to break it up if needed as more experience is gathered. If a separate
server is established in the U.S. for their work on a module, then logically that module would probably be in
its own repository and potentially exposed in the larger one via svn:externals. Other repositories might be
established for artifacts for non-developer project team members, but that might also be accomplished via
separate projects within the same repository.

Configuration management should really “own” the infrastructure decisions along with any assigned system
administrators. Business continuity and disaster recovery approaches should be “owned” by the system
administrators with input from configuration management.

4.1.2. What Should be Your Branching/Merging Scheme?

Since there is overlapping releases, this would seem to be a great candidate for the stable trunk approach
where branches are created for individual releases and merged back into the trunk when the release is
completed. Bug fixes could be continuations of the release branches (assuming appropriate measures are
taken to allow for multiple reintegration efforts) or new branches established off of the release merge point in
the trunk. Bug fixes should be merged into other ongoing releases (both under support and under
development), but can not be blindly merged as an overwrite back into the trunk.

Merging should be done periodically from the assumed predecessor release branch. This allows for the
cascading of changes rather than having to worry about merging a change to multiple other branches and
allows the release team to determine when they want to take the potential impact of merging such changes
into their on-going work.

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

14

Things can be more complicated than what is documented here depending on other use cases that are not
explicitly defined in the lab and maybe assumed in multiple ways.

4.1.3. What if Some Additional Requirements Were Added?

The change from BTF to SaaS might make it possible to support a single release of the product, but only if
the product is handled in a multi-tenant manner. If individual customers get their own instantiation, then it is
likely that multiple versions will have to be supported. Again, this may mean less supported versions, but it
really causes no change in what we discussed to this point.

The need to use a library from within multiple components would best be satisfied by the use of
svn:externals which would allow the shared library to be structurally placed appropriately to the individual
components utilizing it when a working copy is checked out.

Features that bring risk to the overall development work call for isolation of that work on feature branches.
This allows developers to work and to version control their work along the way without impacting other work.
Such branches would come off of the associated feature branch and be merged back into it either when the
work is completed or when there is no perceived risk from additional work being checked into the release
branch. There is the flexibility that should a feature not be ready when a release is desired, the feature
branch could be merged into the next release branch. Merging should be done as often as possible from the
release branch to the feature branch in order to keep them in sync. And where possible, merging should be
done as often as possible from the feature branch to the release branch.

Customer customizations require the use of customer branches. These would be established from the trunk
based on the product release that the customer initially received. As the product continues to evolve and the
customer is willing to take releases, the trunk should be merged into the customer branch. If certain features
or defect fixes are determined to be candidates for the general product, then the specific revisions involved
on the customer branch should be merged into the designated release branch.

Feature branches can either be established by the team lead or by the individual developer who recognizes
the need for them. More commonly it is the latter approach that is used in order to facilitate getting to work
quicker. Merging should be the responsibility of the developer using the feature branch unless it is a team
and then that responsibility may be the team lead’s. The creation of customer branches should be the
responsibility of the team lead and merges from the trunk should be under their direction. Merging features
from the customer branches should also be driven by the team lead.

4.1.4. How Would You Handle Recording Your Promotional Process?

Module tagging would be the responsibility of the release engineer for the team developing that module. In
the case of the U.S. team, that may be a shared responsibility or one held by the team lead. The module
should be built and the source tagged with a release candidate number and the release number (e.g.,
RC1_Rel1.0_1 where the final number is an indication of how many builds it took to get this release
candidate). When a release candidate has been determined to be production worthy, then the release
candidate should be tagged to indicate that (e.g., Prod_Rel1.0). These tags should be in the tags/SCM
directory.

Product tagging would be the responsibility of the Amsterdam release engineer. The system should be built
and the source tagged with a QA tag (e.g., QA1_Rel1.0_1). If that revision passes QA, then it would be
tagged with a UAT tag (e.g., UAT1_Rel1.0). If it failed QA, then it would be sent back for rework and the next

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

15

candidate from development would get a new QA tag (e.g., QA2_Rel1.0_1) and if it passed QA, then a new
UAT tag (e.g., UAT2_Rel1.0). If the UAT stage is passed, then the revision would get a system test tag (e.g.,
ST_Rel1.0). If the system test stage is passed, then the revision would get a production worthy tag (e.g.,
Rel1.0). It would also be helpful (if possible) to identify what actually has made it into production versus
being production worthy so an additional tag may be used or the production tag not applied until the revision
is put into production (deployed to customers or deployed to a server). These tags should be in the
tags/SCM directory.

Developers can apply tags when they feel it is necessary and nomenclature can probably be left up to the
individual developer versus standardized. They would place such tags in the tags/Dev directory. Note that
there may be little to no need for such tags given the global revision approach taken by Subversion.

4.1.5. How Would You Define Roles and Permissions?

The table below is a possible answer to the question given the information provided. There could be alternatives
that would still satisfy the requirements and thus be correct answers. See your instructor to validate your answer.

Role Repositories Trunk Branches Directories Tags

Dutch
Developer

Assuming 1,
read access to
everything

Write access
(could be limited
to just the
modules the
Dutch team is
expected to
modify)

Write access (could
be limited to just
the modules the
Dutch team is
expected to modify)

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the Dutch
team is expected to
modify)

Indian
Developer

Assuming 1,
read access to
everything

Write access
(could be limited
to just the
modules the
Indian team is
expected to
modify)

Write access (could
be limited to just
the modules the
Indian team is
expected to modify)

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the Indian
team is expected to
modify)

U.S.
Developer

Assuming 1,
read access to
be limited

Write access to
just the module
the U.S. team is
expected to
modify

Write access
limited to just the
module the U.S.
team is expected to
modify

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the U.S.
team is expected to
modify)

Dutch Team
Lead

Assuming 1,
read access to
everything

Write access
(could be limited
to just the
modules the
Dutch team is
expected to

Write access (could
be limited to just
the modules the
Dutch team is
expected to modify)

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the Dutch
team is expected to

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

16

modify) modify)

Indian Team
Lead

Assuming 1,
read access to
everything

Write access
(could be limited
to just the
modules the
Dutch team is
expected to
modify)

Write access (could
be limited to just
the modules the
Indian team is
expected to modify)

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the Indian
team is expected to
modify)

U.S. Team
Lead

Assuming 1,
read access to
be limited

Write access to
just the module
the U.S. team is
expected to
modify

Write access
limited to just the
module the U.S.
team is expected to
modify)

No limits
(could control
write access to
QA and rel
eng)

Write access to
tags/Dev (could be
limited to just the
modules the U.S.
team is expected to
modify)

Dutch QA Assuming 1,
read access to
everything

Write access not
broadly granted

Write access not
broadly granted

Write access
only to QA
directory
(could be an
external to a
separate
repository
where control
would be
easier)

No write access

Indian QA Assuming 1,
read access to
everything

Write access not
broadly granted

Write access not
broadly granted

Write access
only to QA
directory
(could be an
external to a
separate
repository
where control
would be
easier)

No write access

U.S. QA Assuming 1,
read access to
be limited

Write access not
broadly granted

Write access not
broadly granted

Write access
only to QA
directory
(could be an
external to a
separate
repository
where control
would be

No write access

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

17

easier)

Dutch
Release
Engineer

Assuming 1,
read access to
everything

Write access not
broadly granted

Write access not
broadly granted

Write access
only to rel eng
directory
(could be an
external to a
separate
repository
where control
would be
easier)

Write access to
tags/SCM (could be
limited to just the
modules the Dutch
team is expected to
modify)

Indian
Release
Engineer

Assuming 1,
read access to
everything

Write access not
broadly granted

Write access not
broadly granted

Write access
only to rel eng
directory
(could be an
external to a
separate
repository
where control
would be
easier)

Write access to
tags/Dev (could be
limited to just the
modules the Indian
team is expected to
modify)

Configuration
Manager

Assuming 1,
read access to
everything

Write access to
all modules

Write access to all
modules

No limits Write access to all
tags

Management Assuming 1,
read access to
everything

No write access No write access No write
access

No write access

Copyright © 2015 CollabNet, Inc. All Rights Reserved. CollabNet Confidential.

18

	1. Essential Concepts
	1.1. Basic repository operations
	1.2. Restructuring a repository
	1.3. Mapping svn:external

	2. Best Practices
	2.1. Background
	2.1.1. Your product
	2.1.2. Your team
	2.1.3. General lab rules

	2.2. Scenarios to consider
	2.2.1. How would you organize your infrastructure to work effectively?
	2.2.2. What should be? your branching/merging scheme?
	2.2.3. What if some additional requirements were added?
	2.2.4. How would you handle recording your promotional process?
	2.2.5. How would you define roles and permissions?

	3. Solutions for Lab 1 – Essential Concepts 1
	3.1. Suggested Solution for Basic Repository Operations
	3.2. Suggested Solution for Restructuring a Repository
	3.3. Suggested Solution for Mapping svn:external

	4. Solutions for Lab 2 – Best Practices
	4.1. Suggested Solution for Scenarios to Consider
	4.1.1. How Would You Organize Your Infrastructure to Work Effectively?
	4.1.2. What Should be Your Branching/Merging Scheme?
	4.1.3. What if Some Additional Requirements Were Added?
	4.1.4. How Would You Handle Recording Your Promotional Process?
	4.1.5. How Would You Define Roles and Permissions?

